The Boolean expression $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee \sim q} \right)} \right) \wedge \left( { \sim p \wedge \sim q} \right)$ is equivalent to
$p \wedge q$
$p \wedge \left( { \sim q} \right)$
$\left( { \sim p} \right) \wedge \left( { \sim q} \right)$
$p \vee \left( { \sim q} \right)$
The proposition $p \rightarrow \sim( p \wedge \sim q )$ is equivalent to
If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is
The statement $(p \Rightarrow q) \vee(p \Rightarrow r)$ is NOT equivalent to.
$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then
The converse of the statement $((\sim p) \wedge q) \Rightarrow r$ is