The Boolean expression $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee  \sim q} \right)} \right) \wedge \left( { \sim p \wedge  \sim q} \right)$ is equivalent to

  • [JEE MAIN 2019]
  • A

    $p \wedge q$

  • B

    $p \wedge \left( { \sim q} \right)$

  • C

    $\left( { \sim p} \right) \wedge \left( { \sim q} \right)$

  • D

    $p \vee \left( { \sim q} \right)$

Similar Questions

The proposition $p \rightarrow \sim( p \wedge \sim q )$ is equivalent to

  • [JEE MAIN 2020]

If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is

The statement $(p \Rightarrow q) \vee(p \Rightarrow r)$ is NOT equivalent to.

  • [JEE MAIN 2022]

$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then

  • [JEE MAIN 2023]

The converse of the statement $((\sim p) \wedge q) \Rightarrow r$ is

  • [JEE MAIN 2023]