- Home
- Standard 11
- Mathematics
The Boolean expression $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee \sim q} \right)} \right) \wedge \left( { \sim p \wedge \sim q} \right)$ is equivalent to
$p \wedge q$
$p \wedge \left( { \sim q} \right)$
$\left( { \sim p} \right) \wedge \left( { \sim q} \right)$
$p \vee \left( { \sim q} \right)$
Solution
$\left( {\left\{ {\left( {p \wedge q} \right) \vee p} \right\} \vee \left\{ {\left( {p \wedge q} \right) \vee \sim q} \right\}} \right) \wedge \sim \left( {p \vee q} \right) \equiv $
$\left\{ {p \vee \left( {p \vee \sim q} \right) \wedge \left( {q \vee \sim q} \right)} \right\} \wedge \sim \left( {p \vee q} \right)$
$\left( {p \vee \left\{ {p \vee \sim q} \right\}} \right) \wedge \left( {p \vee q} \right) \equiv \left( {p \vee \sim q} \right) \wedge \sim \left( {p \vee q} \right) \equiv \sim p \wedge \sim q$